استفاده از الگوریتم میانگین غیر محلی و رادیوگرافی صنعتی برای آشکارسازی عیوب قطعات هواپیما

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه بین المللی امام خمینی

2 گروه فیزیک، دانشگاه بین المللی امام خمینی (ره)

3 هیات علمی پژوهشگاه علوم و فنون هسته ای

چکیده

تنش‌های فیزیکی در قطعات معیوب هواپیما باعث شکستگی و خسارت می‌شوند. تشخیص دقیق عیب‌های داخلی توسط آزمون رادیوگرافی امکان پذیر است. تعیین مکان عیوب توسط شخص پرتوکار، به دقت و مهارت و کیفیت رادیوگراف‌ها بستگی دارد. بسیاری از تصاویر تهیه شده با روش پرتونگاری صنعتی واضح نیستند و تشخیص دقیق عیوب آنها مشکل است؛ در نتیجه نیاز به روش‌هایی است که به کمک آنها بتوان این عیب‌ها را دقیق‌تر بررسی کرد. تصاویر رادیوگرافی یا پرتونگاره‌ها به علت پراکندگی ذاتی اشعه ایکس قدری مات شدگی دارند. در این مطالعه با استفاده از روش صافی میانگین غیر محلی که مبتنی بر تشخیص پیکسل‌های مشابه در یک همسایگی است، برای تشخیص نواحی خوردگی استفاده شده است. در این روش تصویر به پنجر‌ه‌های کوچکتر تقسیم شده و الگوریتم پیکسل‌یابی روی این قسمت‌ها انجام می‌شود. در این روش داشتن انحراف معیار نویز اولیه برای پیاده‌سازی الگوریتم مهم است. نتایج نشان می‌دهد با توجه به نداشتن مقدار تابع نویز تصاویر رادیوگرافی، روش حذف زمینه برای اجرای این الگوریتم مناسب‌تر است. در این تحقیق، با در نظر گرفتن مقدار زیادی برای انحراف معیار نویز فرضی، تصویر زمینه بدست آمده و از تصویر اولیه رادیوگرافی کم شده است. تصویر بازسازی شده دارای لبه‌های تیزی است که نواحی خوردگی را با وضوح بیشتر مشخص می‌کند. ارزیابی نتایج توسط کارشناسان رادیوگرافی نشان می‌دهد که از نظر آنها این روش کارایی لازم برای آشکارسازی عیوب را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Use of non-local means algorithm and radiography to detect defects in aircraft parts

نویسندگان [English]

  • Pouyan ShayganFar 1
  • Effat yahaghi 2
  • Amir Movafeghi 3
1 Imam Khomeini International University
2 Imam Khomeini International Univesity, Qazvin, Iran,
3 Scientific member, Nuclear Science & Technology Research Institute (NSTRI)
چکیده [English]

Fractures and damages can be resulted from physical stresses in the flawed parts of an aircraft. The exact detection of internal defects is possible by radiography testing. The determination of the defects locations by the experts depends on the accuracy, skill and quality of the radiographs. Many of the produced images by industrial radiography are not clear, and it is difficult to accurately detect their defects; hence, the processing methods can help to better investigation of the defects. These images suffer from some opaqueness due to the inherent dispersion of X-rays. In this study, a non-local mean method based on the detection of similar pixels in a neighboring area is used to identify corrosion areas. In the method, the image is split into smaller windows and the similar pixel is found on these parts. The results of the method show that, due to the lack of noise function in radiographic images, the background elimination method is more suitable for this algorithm. In this research, the large amount of standard deviation of the noise is considered and background is extracted, the obtained image was reduced from the original radiographic image. The reconstructed image has sharp edges that more clearly indicates the defect area. The evaluation of the results by radiography experts showed that this method has the efficiency to detect defects.

کلیدواژه‌ها [English]

  • Non-local means algorithms
  • Radiography
  • defects detection
  • aircraft parts
  • image processing

1- Nacereddine, N., Drai, R, Benchaala A., 2002. “Weld  defect  extraction  and  identification  in  radiograms  based neural networks,” in Proc. IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, Crete, Greece, June, pp 38-43.

2- Movafeghi A., Kargarnovin M. H., Soltanian-Zadeh H., et al, 2005. “Flaw Detection Improvement of Digitized Radiographs by Morphological Transformations”, Insight - Nondestructive Testing and Condition Monitoring, Vol. 47, No. 10, pp. 625-630.

3- Buades, Coll, B., Morel, J.M., 2006. “A review of image denoising methods, with a new one", Multi-scale Modeling and Simulation, Vol. 4 (2), pp: 490-530. http://dx.doi.org/10.1137/ 040616024

4- Buades, A., Coll, B., Morel, J.M., 2005. “Non-local algorithm for image denoising", IEEE Computer Vision and Pattern Recognition 2005, Vol 2, pp: 60-65, http://dx.doi.org/10.1109/ CVPR.2005.38

5- Manjón,  J.V., Carbonell Caballero, J., Lull, J.J., Garcia Martí, G., Martí Bonmatí, L., Robles, M., 2008.  MRI denoising using non- local means. Med. Image Anal. 4, 514 – 523.

6- Huazhu  Song;  Zichun  Ding;  Cuicui  Guo  and  Zhe  Li,  “Research on Combination Kernel Function of Support Vector Machine”, International Conference on Computer Science and Software Engineering, Volume:1, Pages: 838 –841, Dec. 2008.

7- Buades, A., Coll, B., Morel, J.M., 2007. “Image data processing method by reducing image noise, and camera integrating means for implementing said method", EP Patent 1,749,278 (Feb. 7).

8- Coupé, P., Hellier, P., Prima, S., Kervrann, C., Barillot, C., 2008b. 3D wavelet subbands mixing for image denoising. Int. J. Biomed. Imaging. doi:10.1155/2008/ 590183 (Article ID: 590183).

9- Manjón, J.V., Coupé, P., Martí -Bonmatí, L., Robles, M., Collins, D.L., 2010. Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31, 192–203.

10- Lou, Y., Favaro, P., Soatto, S., 2008. Nonlocal similarity image filtering. Research Reports CAM (8–26).

11- ISO-14096-1, 2005, “Nondestructive  testing – Qualification of radiographic film digitization systems – part 1: Definitions, qualitative measurements of image quality parameters, standard reference film and qualitative control”, the International Organization for Standardization

12- ISO 14096-2, 2005, “Nondestructive testing – Qualification of radiographic film digitization systems – part 2: Minimum requirement”, the International Organization for Standardization.

13- ISO-17636-1, 2013 Nondestructive  testing of welds — Radiographic testing - Part 1: X- and gamma-ray techniques with film, the International Organization for Standardization

14- ISO-17636-2, 2013 Nondestructive  testing of welds -- Radiographic testing - Part 2: X- and gamma-ray techniques with digital detectors, the International Organization for Standardization

15- ISO-19232-1, 2018, Nondestructive  testing - Image quality of radiographs - Part 1: Determination of the image quality value using wire-type image quality indicators, the International Organization for Standardization

16- ISO-19232-5, 2018, Nondestructive  testing - Image quality of radiographs - Part 5: Determination of the image unsharpness value using duplex wire-type image quality indicators, the International Organization for Standardization